Acta Psychologica Sinica ›› 2021, Vol. 53 ›› Issue (8): 837-846.doi: 10.3724/SP.J.1041.2021.00837
• Reports of Empirical Studies • Previous Articles Next Articles
CHEN Shi1, LIANG Zheng1, LI Xianglan1, CHEN Yanran1, ZHAO Qingbai1(), YU Quanlei1(), LI Songqing1, ZHOU Zhijin1(), LIU Lizhong2
Received:
2019-10-09
Published:
2021-08-25
Online:
2021-06-25
Contact:
ZHAO Qingbai,YU Quanlei,ZHOU Zhijin
E-mail:zqbznr@mail.ccnu.edu.cn;yulei19881987@mail.ccnu.edu.cn;zhouzj@mail.ccnu.edu.cn
Supported by:
CHEN Shi, LIANG Zheng, LI Xianglan, CHEN Yanran, ZHAO Qingbai, YU Quanlei, LI Songqing, ZHOU Zhijin, LIU Lizhong. (2021). The role of novel semantic association in the promoting effect of insight on memory. Acta Psychologica Sinica, 53(8), 837-846.
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal.psych.ac.cn/acps/EN/10.3724/SP.J.1041.2021.00837
Riddles | Novel answers | Ordinary answers | Irrelevant A1 | Irrelevant A2 |
---|---|---|---|---|
Doing more and more quickly | overwork becomes illness | Practice makes perfect | So cool | It’s very fluid |
Sightseeing | You can see everything | Travel around the world | praise | Unswerving till death |
Table 1 Experiment 1: examples of task materials for Chengyu riddle answer selection
Riddles | Novel answers | Ordinary answers | Irrelevant A1 | Irrelevant A2 |
---|---|---|---|---|
Doing more and more quickly | overwork becomes illness | Practice makes perfect | So cool | It’s very fluid |
Sightseeing | You can see everything | Travel around the world | praise | Unswerving till death |
Association types | Selective reaction time (s) | The “Aha” experience |
---|---|---|
Novel association | 3.65 ± 0.51 | 3.96 ± 1.01 |
Ordinary association | 3.85 ± 0.54 | 3.00 ± 1.05 |
Table 2 The reaction time and the “Aha” experience score during the learning stage (M ± SD)
Association types | Selective reaction time (s) | The “Aha” experience |
---|---|---|
Novel association | 3.65 ± 0.51 | 3.96 ± 1.01 |
Ordinary association | 3.85 ± 0.54 | 3.00 ± 1.05 |
Association types | Remember (%) | Familiarity (%) | Guess (%) |
---|---|---|---|
Novel association | 61.56 ± 18.19 | 17.68 ± 10.40 | 4.71 ± 4.57 |
Ordinary association | 34.05 ± 24.26 | 25.24 ± 14.39 | 11.56 ± 13.85 |
Table 3 In Experiment 1, the accuracy for different reasons at the stage of test (M ± SD)
Association types | Remember (%) | Familiarity (%) | Guess (%) |
---|---|---|---|
Novel association | 61.56 ± 18.19 | 17.68 ± 10.40 | 4.71 ± 4.57 |
Ordinary association | 34.05 ± 24.26 | 25.24 ± 14.39 | 11.56 ± 13.85 |
Riddles | Novel answers | Ordinary answers | Plausible answers |
---|---|---|---|
Doing more and more quickly | From overwork comes illness | Practice makes perfect | Advance by leaps and bounds |
Divine Comedy | Different from the mortal sound | Sound of Nature | Resounding across the sky |
Table 4 Experiment 2: examples of task materials for Chengyu riddle answer selection
Riddles | Novel answers | Ordinary answers | Plausible answers |
---|---|---|---|
Doing more and more quickly | From overwork comes illness | Practice makes perfect | Advance by leaps and bounds |
Divine Comedy | Different from the mortal sound | Sound of Nature | Resounding across the sky |
Association types | Remember (%) | Familiarity (%) | Guess (%) |
---|---|---|---|
Novel association | 44.27 ± 16.36 | 11.48 ± 4.72 | 6.77 ± 4.65 |
Ordinary association | 35.42 ± 11.71 | 20.91 ± 12.34 | 6.47 ± 5.25 |
Table 5 In Experiment 2, the accuracy for different reasons at the stage of test (M ± SD)
Association types | Remember (%) | Familiarity (%) | Guess (%) |
---|---|---|---|
Novel association | 44.27 ± 16.36 | 11.48 ± 4.72 | 6.77 ± 4.65 |
Ordinary association | 35.42 ± 11.71 | 20.91 ± 12.34 | 6.47 ± 5.25 |
Conditions | Brain regions | Hemispheres | Cluster size | MNI coordinates | t value | |||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
Brain regions related to novel semantic associations | ||||||||
Cerebellum | Left | 208 | -14 | -28 | -36 | 5.10 | ||
Parahippocampal gyrus | Right | 102 | 32 | -10 | -32 | 4.29 | ||
Cerebellum | Right | 60 | 20 | -30 | -32 | 4.19 | ||
Cerebellum | Left | 75 | -6 | -46 | -40 | 3.98 | ||
Middle frontal gyrus | Left | 23 | -54 | 22 | 32 | 3.68 | ||
Brain regions related to memory | ||||||||
Olfactory bulb | Right | 369 | 26 | 8 | -14 | 5.32 | ||
Cerebellum | Right | 102 | 38 | -64 | -50 | 4.92 | ||
Middle frontal gyrus | Left | 153 | -46 | 48 | -2 | 4.52 | ||
Amygdala | Left | 585 | -24 | 2 | -18 | 4.32 | ||
precentral gyrus | Right | 31 | 60 | -2 | 40 | 3.77 | ||
Inferior frontal gyrus | Left | 24 | -50 | 30 | 14 | 3.61 | ||
Novel association memory | ||||||||
Olfactory bulb | Right | 1090 | 18 | 6 | -12 | 5.41 | ||
Hippocampus | Right | 30 | -12 | -12 | 4.13 | |||
Amygdala | Left | 824 | -24 | 4 | -16 | 4.82 | ||
Insula | Right | 88 | 44 | -8 | 8 | 4.08 | ||
precentral gyrus | Right | 23 | 34 | -12 | 48 | 3.92 | ||
Cerebellum | Right | 22 | 36 | -64 | -50 | 3.89 | ||
Angular gyrus | Left | 24 | -42 | -64 | 54 | 3.88 | ||
Middle frontal gyrus | Left | 61 | -32 | 52 | 2 | 3.86 | ||
Superior temporal gyrus | Left | 128 | -46 | -20 | 0 | 3.78 | ||
Middle temporal gyrus | Left | 20 | -52 | -36 | -10 | 3.73 | ||
precentral gyrus | Right | 28 | 54 | -8 | 46 | 3.62 | ||
Ordinary association memory | ||||||||
Cerebellum | Right | 25 | 40 | -66 | -50 | 3.91 | ||
Olfactory bulb | Right | 25 | 24 | 12 | -18 | 3.81 | ||
Interaction-related brain regions | ||||||||
Hippocampus | Right | 77 | 40 | -20 | -10 | 4.35 | ||
Hippocampus | Right | 99 | 28 | -10 | -16 | 4.03 | ||
Cerebellum | Left | 139 | -8 | -56 | -50 | 3.86 | ||
Superior temporal gyrus | Left | 21 | -46 | -16 | -4 | 3.60 |
Table 6 Brain regions related to novel semantic association, memory and interaction
Conditions | Brain regions | Hemispheres | Cluster size | MNI coordinates | t value | |||
---|---|---|---|---|---|---|---|---|
x | y | z | ||||||
Brain regions related to novel semantic associations | ||||||||
Cerebellum | Left | 208 | -14 | -28 | -36 | 5.10 | ||
Parahippocampal gyrus | Right | 102 | 32 | -10 | -32 | 4.29 | ||
Cerebellum | Right | 60 | 20 | -30 | -32 | 4.19 | ||
Cerebellum | Left | 75 | -6 | -46 | -40 | 3.98 | ||
Middle frontal gyrus | Left | 23 | -54 | 22 | 32 | 3.68 | ||
Brain regions related to memory | ||||||||
Olfactory bulb | Right | 369 | 26 | 8 | -14 | 5.32 | ||
Cerebellum | Right | 102 | 38 | -64 | -50 | 4.92 | ||
Middle frontal gyrus | Left | 153 | -46 | 48 | -2 | 4.52 | ||
Amygdala | Left | 585 | -24 | 2 | -18 | 4.32 | ||
precentral gyrus | Right | 31 | 60 | -2 | 40 | 3.77 | ||
Inferior frontal gyrus | Left | 24 | -50 | 30 | 14 | 3.61 | ||
Novel association memory | ||||||||
Olfactory bulb | Right | 1090 | 18 | 6 | -12 | 5.41 | ||
Hippocampus | Right | 30 | -12 | -12 | 4.13 | |||
Amygdala | Left | 824 | -24 | 4 | -16 | 4.82 | ||
Insula | Right | 88 | 44 | -8 | 8 | 4.08 | ||
precentral gyrus | Right | 23 | 34 | -12 | 48 | 3.92 | ||
Cerebellum | Right | 22 | 36 | -64 | -50 | 3.89 | ||
Angular gyrus | Left | 24 | -42 | -64 | 54 | 3.88 | ||
Middle frontal gyrus | Left | 61 | -32 | 52 | 2 | 3.86 | ||
Superior temporal gyrus | Left | 128 | -46 | -20 | 0 | 3.78 | ||
Middle temporal gyrus | Left | 20 | -52 | -36 | -10 | 3.73 | ||
precentral gyrus | Right | 28 | 54 | -8 | 46 | 3.62 | ||
Ordinary association memory | ||||||||
Cerebellum | Right | 25 | 40 | -66 | -50 | 3.91 | ||
Olfactory bulb | Right | 25 | 24 | 12 | -18 | 3.81 | ||
Interaction-related brain regions | ||||||||
Hippocampus | Right | 77 | 40 | -20 | -10 | 4.35 | ||
Hippocampus | Right | 99 | 28 | -10 | -16 | 4.03 | ||
Cerebellum | Left | 139 | -8 | -56 | -50 | 3.86 | ||
Superior temporal gyrus | Left | 21 | -46 | -16 | -4 | 3.60 |
Figure 2. The left figure shows the right hippocampus (yellow area), which is significantly activated by the interaction between the semantic association type and the memory type, and the right figure shows the brain activation intensity (Beta value) and its difference under different conditions (note: *** means p < 0.001)
[1] |
Auble, P. M., Franks, J. J., & Soraci, S. A. (1979). Effort toward comprehension: Elaboration or "aha"? Memory & Cognition, 7(6), 426-434.
doi: 10.3758/BF03198259 URL |
[2] |
Bowden, E. M., & Jung-Beeman, M. (2003). Aha! insight experience correlates with solution activation in the right hemisphere. Psychonomic Bulletin & Review, 10,730-737.
doi: 10.3758/BF03196539 URL |
[3] |
Danek, A. H., Fraps, T., von Müller, A., Grothe, B., & Öllinger, M. (2013). Aha! experiences leave a mark: facilitated recall of insight solutions. Psychological Research, 77(5), 659-669.
doi: 10.1007/s00426-012-0454-8 URL |
[4] |
Friese, U., Köster, M., Hassler, U., Martens, U., Trujillo-Barreto, N., & Gruber, T. (2013). Success memory encoding is associated with increased cross-frequency coupling between frontal theta and posterior gamma oscillations in human scalp-recorded EEG. Neuroimage, 66, 642-647.
doi: 10.1016/j.neuroimage.2012.11.002 pmid: 23142278 |
[5] |
Huang, F. R., Zhou, Z. J., & Zhao, Q. B. (2013). An eye movement study of associate competition in Chinese idiom riddles solving. Acta Psychologica Sinica, 45(1), 35-46.
doi: 10.3724/SP.J.1041.2013.00035 URL |
[6] |
Kizilirmak, J. M., Silva, J., Imamoglu, F., & Richardson-Klavehn, A. (2016). Generation and the subjective feeling of "aha!" are independently related to learning from insight. Psychological Research, 80(6), 1059-1074.
pmid: 26280758 |
[7] |
Kizilirmak, J. M., Schott, B. H., Thuerich, H., Sweeney-Reed, C. M., Richter, A., Folta-Schoofs, K., & Richardson-Klavehn, A. (2019). Learning of novel semantic relationships via sudden comprehension is associated with a hippocampus-independent network. Consciousness and Cognition, 69, 113-132.
doi: S1053-8100(18)30566-X pmid: 30763808 |
[8] |
Kizilirmak, J. M., Thuerich, H., Folta-Schoofs, K., Schott, B. H., & Richardson-Klavehn, A. (2016). Neural correlates of learning from induced insight: A case for reward-based episodic encoding. Frontiers in Psychology, 7, 1693.
pmid: 27847490 |
[9] | Lai, Y., Yang, Q., Huang, B., & Sai, L. (2019). The promoting effect of insight on memory. Advances in Psychological Sciences, 27(12), 2034-2042. |
[10] | Li, J., & Guo, X. (2009). A functional approach to memory research. Advances in Psychological Sciences, 17(5), 922-930. |
[11] |
Ludmer, R., Dudai, Y., & Rubin, N. (2011). Uncovering camouflage: Amygdala activation predicts long-term memory of induced perceptual insight. Neuron, 69(5), 1002-1014.
doi: 10.1016/j.neuron.2011.02.013 URL |
[12] |
Luo, J., & Niki, K. (2003). Function of hippocampus in "insight" of problem solving. Hippocampus, 13(3), 316-323.
doi: 10.1002/(ISSN)1098-1063 URL |
[13] |
Mednick, S. A. (1962). The associative basis of the creative process. Psychological Review, 69(3), 220-232.
doi: 10.1037/h0048850 URL |
[14] | Ohlsson, S.(Ed). (2011) Deep learning: how the mind overrides experience. Cambridge University Press: New York. |
[15] | Opitz, B. (2014). Memory Function and the Hippocampus. Monographs in Neural Sciences, 34(3), 51-59. |
[16] |
Shen, W., Liu, C., Yuan, Y., Zhang, X., & Luo, J. (2013). Temporal dynamics of mental impasses underlying insight-like problem solving. Science China: Life Sciences, 43(3), 254-262.
doi: 10.1007/BF02879284 URL |
[17] | Shen, W., Luo, J., Liu, C., & Yuan, Y. (2012). One decade for insightful brain: New advances on neural correlates of insight. Chinese Science Bulletin, 57(21), 1948-1963. |
[18] |
Shen, W., Tong, Y., Li, F., Yuan, Y., Hommel, B., Liu, C., & Luo, J. (2018). Tracking the neurodynamics of insight: A meta-analysis of neuroimaging studies. Biological Psychology, 138, 189-198.
doi: 10.1016/j.biopsycho.2018.08.018 URL |
[19] |
Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., … Buckner, R. L. (1998). Building memories: Remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281, 1188-1191.
doi: 10.1126/science.281.5380.1188 URL |
[20] |
Waldhauser, G. T., Braun, V., & Hanslmayr, S. (2016). Episodic memory retrieval functionally relies on very rapid reactivation of sensory information. Journal of Neuroscience, 36(1), 251-260.
doi: 10.1523/JNEUROSCI.2101-15.2016 URL |
[21] |
Wills, T. W., Soraci, S. A., Chechile, R. A., & Taylor, A. H. A. (2000). "Aha" effects in the generation of pictures. Memory & Cognition, 28(6), 939-948.
doi: 10.3758/BF03209341 URL |
[22] | Yu, F., Zhang, J., Fan, J., Luo, J., & Zhang, W. (2019). Hippocampus and amygdala: An insight-related network involved in metaphorical solution to mental distress problem. Cognitive, Affective, & Behavioral Neuroscience, 19(4), 1022-1035. |
[23] |
Zhao, Q. B., Ke, W., Tong, B., Zhou, Z. J., & Zhou, Z. K. (2017). Creative processing of internet language: Novel N400 and LPC. Acta Psychologica Sinica, 49(2), 143-154.
doi: 10.3724/SP.J.1041.2017.00143 URL |
[24] |
Zhao, Q. B., Li, S. Q., Chen, S., Zhou, Z. J., & Cheng, L. (2015). Dynamic neural processing mode of creative problem solving. Advances in Psychological Science, 23(3), 375-384.
doi: 10.3724/SP.J.1042.2015.00375 URL |
[25] |
Zhao, Q. B., Wei, L. L., Li, Y., Zhou, Z. J., Zhao, L. L., & Tang, L. (2017). Right hemispheric dominance in forming novel semantic associations. Acta Psychologica Sinica, 49(11), 1370-1382.
doi: 10.3724/SP.J.1041.2017.01370 URL |
[26] |
Zhao, Q. B., Zhou, Z. J., Xu, H. B., Chen, S., Xu, F., Fan, W. L., & Han, L. (2013). Dynamic neural network of insight: A functional magnetic resonance imaging study on solving Chinese ‘chengyu’ riddles. PLoS One, 8(3), e59351.
doi: 10.1371/journal.pone.0059351 URL |
[27] |
Zhao, Q. B., Zhou, Z. J., Xu, H. B., Fan, W. L., & Han, L. (2014). Neural pathway in the right hemisphere underlies verbal insight problem solving. Neuroscience, 256, 334-341.
doi: 10.1016/j.neuroscience.2013.10.019 pmid: 24161281 |
[1] | LI Jianhua, XIE Jiajia, ZHUANG Jin-Ying. An effect of menstrual cycle phase on episodic memory [J]. Acta Psychologica Sinica, 2022, 54(5): 466-480. |
[2] | JIA Shiwei, QI Congcong, CHEN Lele, REN Yanju. The effect of working memory load on feedback processing: Evidence from an event-related potentials (ERP) study [J]. Acta Psychologica Sinica, 2022, 54(3): 248-258. |
[3] | WANG Ming, SUN Qiwu, LIU Jing, REN Zhihong, JIANG Guangrong. Effects of vulnerable personality traits of PTSD, working memory abilities and peritraumatic cognitive processing on analogue traumatic flashbacks [J]. Acta Psychologica Sinica, 2022, 54(2): 168-181. |
[4] | CHE Xiaowei, XU Huiyun, WANG Kaixuan, ZHANG Qian, LI Shouxin. Precision requirement of working memory representations influences attentional guidance [J]. Acta Psychologica Sinica, 2021, 53(7): 694-713. |
[5] | LI Junjiao, CHEN Wei, HU Yanjian, CAOYANG Jingwen, ZHENG Xifu. Effects of prediction error and acute stress on retrieval-extinction of fear memories of different strengths [J]. Acta Psychologica Sinica, 2021, 53(6): 587-602. |
[6] | MENG Yingfang, DONG Yueqing, CHEN Quan. Attentional boost effect in conceptual implicit memory [J]. Acta Psychologica Sinica, 2021, 53(5): 469-480. |
[7] | ZHANG Huan, WANG Xin, LIU Yibei, CAO Xiancai, WU Jie. The influence of members’ relationship on collaborative remembering [J]. Acta Psychologica Sinica, 2021, 53(5): 481-493. |
[8] | ZHOU Wenjie, DENG Liqun, DING Jinhong. Neural mechanism underlying the effects of object color on episodic memory [J]. Acta Psychologica Sinica, 2021, 53(3): 229-243. |
[9] | ZHANG Mei, DING Shuheng, LIU Guofang, XU Yazhen, FU Xinyuan, ZHANG Wei, XIN Ziqiang. Negativity bias in emergent online events: Occurrence and manifestation [J]. Acta Psychologica Sinica, 2021, 53(12): 1361-1375. |
[10] | SUN Yanliang, SONG Jiaru, XIN Xiaowen, DING Xiaowei, LI Shouxin. Same-category advantage on the capacity of visual working memory [J]. Acta Psychologica Sinica, 2021, 53(11): 1189-1202. |
[11] | CHEN Yuming, LI Sijin, GUO Tianyou, XIE Hui, XU Feng, ZHANG Dandan. The role of dorsolateral prefrontal cortex on voluntary forgetting of negative social feedback in depressed patients: A TMS study [J]. Acta Psychologica Sinica, 2021, 53(10): 1094-1104. |
[12] | HUANG Yuesheng, ZHANG Bao, FAN Xinhua, HUANG Jie. Can negative emotion of task-irrelevant working memory representation affect its attentional capture? A study of eye movements [J]. Acta Psychologica Sinica, 2021, 53(1): 26-37. |
[13] | YANG Fan, SUI Xue, LI Yutong. An eye movement study for the guidance mechanism of long-distance regressions in Chinese reading [J]. Acta Psychologica Sinica, 2020, 52(8): 921-932. |
[14] | HUANG Yanqing, MENG Yingfang. Effects of target detection on memory retrieval [J]. Acta Psychologica Sinica, 2020, 52(6): 706-715. |
[15] | ZHANG Huan, HOU Shuang, WANG Haiman, LIAN Yuxuan, YANG Haibo. Socially shared retrieval-induced forgetting in a naturalistic collaborative retrieval situation [J]. Acta Psychologica Sinica, 2020, 52(6): 716-729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||